Минфин применил ИИ при формировании бюджета

Минфин применил ИИ при формировании бюджета

Минфин применил ИИ при формировании бюджета

Запущенная Министерством финансов совместно со «Сбером» нейросеть помогает автоматизировать сопоставление данных и прочие рутинные процессы. В дальнейшем технологии помогут повысить эффективность и прозрачность управления государственными финансами.

Первый замминистра финансов Ирина Окладникова на полях Московского финансового форума рассказала корреспонденту «Известий» о пилотном проекте использования нейросети в бюджетном процессе.

Искусственный интеллект помогал в сопоставлении кодов бюджетной классификации (статей доходов и расходов) и привязанных к ним результатов.

«Большинство этапов бюджетного процесса может быть со временем автоматизировано, и часть операций — полностью переведена на искусственный интеллект. Это будет зависеть только от того, насколько у нас получится стандартизировать наши процедуры», — считает Ирина Окладникова.

При этом использование технических средств позволит избежать человеческих ошибок и проявлений субъективизма в вопросах, связанных с межведомственным взаимодействием. С другой стороны, искусственный интеллект пока не в состоянии решать такие задачи, как контроль поручений президента и правительства.

«Минфин подготовил базу данных, и мы на ее основе обучили систему. В итоге уже сейчас наш ИИ-агент работает на уровне 84% точности, а будет еще точнее. И тогда основную часть рутинной работы можно будет отправить на машинную обработку, чтобы люди сосредоточились на действительно сложных, важных, творческих и интересных задачах», — отметил первый заместитель председателя правления Сбербанка Александр Ведяхин.

Опрошенные «Известиями» эксперты назвали главным плюсом ускорение работ по подготовке бюджета, повышение качества контроля эффективности и точность прогнозирования. Главным риском же является непрозрачность работы алгоритмов и искажения, вызванные неточностью исторических данных. Серьезной угрозой являются и риски кибербезопасности, многие из которых плохо изучены.

Эксперты: за год число вредоносных opensource-компонентов возросло в 11 раз

В 2025 году в компании CodeScoring зарегистрировали 457 тыс. вредоносных библиотек с открытым исходным кодом — в 11 раз больше, чем в предыдущем году. Зафиксировано также 14 тыс. новых уязвимостей в таких компонентах.

По словам специалистов, сохраняют актуальность и более ранние неприятные находки — к примеру, RCE-уязвимость Log4Shell, которая все еще присутствует в 15 тыс. сторонних библиотек. Публикация подобных пакетов грозит атаками на цепочку поставок.

В уходящем году также зафиксировано появление новой, еще более опасной угрозы — самоходного червя Shai Hulud, способного создавать новые репозитории и воровать конфиденциальные данные с CI/CD-платформ.

В связи с бурным ростом популярности ИИ объявился новый вектор атаки — slopsquatting: злоумышленники начали использовать склонность больших языковых моделей (БЯМ, LLM) к галлюцинациям для внедрения в легитимные проекты небезопасного кода.

Из-за этой особенности умный помощник по разработке может ошибиться и вместо легитимной библиотеки предложить для использования вредоносную со схожим названием. По данным CodeScoring, в России ИИ-ассистентов применяют 30% разработчиков, и потенциально опасные галлюцинации происходят у LLM в 20% случаев.

Чтобы защититься от атак на цепочку поставок, эксперты советуют вести тщательный учет компонентов, используемых для сборки софта, при установке библиотек выставлять запрет на исполнение скриптов, а также следовать стандарту ГОСТ Р 56939-2024 и активнее внедрять технологии безопасной разработки.

RSS: Новости на портале Anti-Malware.ru