Новый вектор ARM-атаки TIKTAG работает против Google Chrome и ядра Linux

Новый вектор ARM-атаки TIKTAG работает против Google Chrome и ядра Linux

Новый вектор ARM-атаки TIKTAG работает против Google Chrome и ядра Linux

Новый вектор атаки спекулятивного выполнения, получивший имя «TIKTAG», нацелен на аппаратную функцию ARM Memory Tagging Extension (MTE) и позволяет атакующему обойти защитные механизмы, а также слить данные с вероятностью более 95%.

В исследовании, опубликованном специалистами Samsung, Сеульского национального университета и Технологического института Джорджии, TIKTAG применяется в демонстрационной атаке на Google Chrome и ядро Linux.

Функциональность MTE присутствует начиная с архитектуры ARM v8.5-A, ее цель — выявлять и предотвращать проблемы повреждения памяти. MTE присваивает 4-битные теги 16-байтовым фрагментам памяти, такой подход позволяет убедиться в том, что тег в указателе соответствует области памяти, к которой осуществляется доступ.

У MTE есть три режима работы: синхронный, асинхронный и асимметричный. Все они помогают сохранить баланс между безопасностью пользовательских данных и приемлемой производительностью устройства.

Как выяснили (PDF) исследователи, если использовать два гаджета — TIKTAG-v1 и TIKTAG-v2, они смогут задействовать спекулятивное выполнение и за короткий промежуток времени слить теги памяти MTE с высоким процентом успеха.

 

Утечка этих тегов не может сразу раскрыть атакующему пароли, ключи шифрования или персональные данные. Тем не менее в теории злоумышленник может обойти защиту MTE и вызвать повреждение памяти.

TIKTAG-v1, как выяснили эксперты, хорошо подходит для атак на ядро Linux, так как затрагивает функции, связанные со спекулятивным доступом к памяти.

TIKTAG-v2, в свою очередь, показал эффективность в атаках на браузер Google Chrome, а именно — на JavaScript-движок V8. В этом случае открывается возможность для эксплуатации уязвимостей, проводящих к повреждению памяти.

 

«Спекулятивный механизм, показывающий верное значение тега, нельзя назвать компрометацией принципов архитектуры, поскольку теги не должны быть закрыты от софта в адресном пространстве», — пишет по этому поводу ARM.

«Не снимайте меня»: как случайные прохожие смогут управлять видеосъёмкой

Камеры сегодня повсюду: в смартфонах, умных очках, экшн-камерах и даже в «умных» дверных звонках. Проблема в том, что в кадр регулярно попадают люди, которые вовсе не давали согласия на съёмку. Исследователи из Калифорнийского университета в Ирвайне решили проверить, можно ли это исправить и представили систему BLINDSPOT.

BLINDSPOT (PDF) — это прототип системы, которая позволяет случайным прохожим прямо сигнализировать камере о своих предпочтениях по конфиденциальности.

Без регистрации, без загрузки биометрии в облако и без привязки к личности. Всё работает локально, на устройстве.

Если человек попадает в поле зрения камеры и подаёт сигнал, система находит его лицо, отслеживает его и автоматически размывает изображение ещё до сохранения или передачи видео. Причём BLINDSPOT проверяет, что сигнал действительно исходит от того, чьё лицо находится в кадре — если «география» не сходится, команда просто игнорируется.

Прототип реализовали на обычном смартфоне Google Pixel.

Исследователи протестировали сразу три варианта, как прохожий может «договориться» с камерой:

1. Жесты руками. Самый простой вариант — провести рукой перед лицом, чтобы включить размытие, и повторить жест в обратную сторону, чтобы его отключить. Никакого дополнительного оборудования не нужно. На расстоянии до 1-2 метров система срабатывала почти безошибочно, а реакция занимала меньше 200 миллисекунд.

2. Световой маячок. Во втором сценарии человек носит с собой небольшой LED-маячок, который мигает в заданном шаблоне и передаёт цифровой сигнал камере. Такой способ работает уже на расстоянии до 10 метров в помещении, с точностью около 90% и без ложных срабатываний. Время отклика — чуть больше полсекунды.

3. UWB-метка. Третий вариант использует ultra-wideband — радиотехнологию с очень точным определением расстояния и направления. Камера и метка обмениваются короткими сигналами через Bluetooth и UWB. Этот способ оказался самым стабильным: точность часто превышала 95%, система корректно работала с несколькими людьми сразу и не давала ложных срабатываний.

 

Главный вывод исследователей — управление приватностью «со стороны прохожего» вполне реально даже на обычном смартфоне.

Как и ожидалось, есть нюансы. Во-первых, расстояние: система должна «видеть» лицо. На практике это означает максимум около 10 метров — дальше лица становятся слишком мелкими для надёжного распознавания.

Во-вторых, толпы. Когда в кадре появляется больше восьми человек, производительность падает: растёт задержка, теряются кадры. Это ограничение связано с обработкой видео на устройстве и одинаково проявляется для всех способов сигнализации.

В-третьих, условия съёмки. Яркий солнечный свет мешает световым маячкам, движение в плотной толпе снижает точность жестов. Задержка между сигналом и фактическим размытием может составлять от долей секунды до двух секунд — и в этот момент запись всё ещё идёт.

Наконец, вопрос железа. Два из трёх вариантов требуют дополнительных устройств, которые пока не являются массовыми. Поддержка таких сигналов напрямую со смартфонов — скорее идея на будущее.

RSS: Новости на портале Anti-Malware.ru