Волокна Windows позволяют выполнить вредоносный шеллкод незаметно для EDR

Волокна Windows позволяют выполнить вредоносный шеллкод незаметно для EDR

Волокна Windows позволяют выполнить вредоносный шеллкод незаметно для EDR

На проходящей в Сингапуре конференции Black Hat Asia были представлены два новых способа использования волокон Windows (fibers) для выполнения вредоносного кода. Один из них, Poison Fiber, допускает проведение атаки удаленно.

Автором обоих PoC является независимый ИБ-исследователь Даниел Джэри (Daniel Jary). По его словам, атаки Poison Fiber и Phantom Thread представляют собой улучшенные варианты opensource-разработок: они позволяют надежнее скрыть сторонний шеллкод или другую полезную нагрузку в системе, находящейся под защитой EDR.

Поддержка волокон была введена в Windows 3 и ранних версиях macOS в обеспечение многозадачной работы по упрощенной схеме. В те времена у процессоров было меньше ядер, и разделение рабочей нагрузки на потоки не всегда давало нужный эффект.

Концепция волокон обеспечила более мелкое дробление, уже внутри потоков. При этом они существуют только в режиме пользователя, а планирование осуществляет поток, в контексте которого они выполняются.

Для ядра ОС волокна невидимы (к планировщику заданий обращаются потоки, они и считаются исполнителями всех операций), из памяти их извлечь трудно. Подобные свойства очень привлекательны для злоумышленников: они позволяют внедрить в систему вредоносный код в обход антивирусной защиты.

Волокна и по сей день используются некоторыми процессами Windows, а также облегчают перенос приложений с других платформ. Возможность злоупотреблений проверялась неоднократно; так, в 2022 году были опубликованы PoC-методы сокрытия в волокне шеллкода и маскировки стека вызовов с помощью спящего волокна (добавлен в набор Cobalt Strike).

Разработка Phantom Thread использует второй подход, но при этом возможность обнаружить зловреда сканированием памяти полностью исключена. С этой целью создается волокно, а затем патчится таким образом, чтобы выдать его за поток.

Второй PoC, созданный Джэри (Poison Fiber), перечисляет запущенные процессы Windows и фиксирует потоки, использующие волокна, а затем предоставляет возможность внедрить пейлоад или шеллкод в спящее волокно — такие всегда найдутся на стеке. Вредоносная инъекция защиту не насторожит, как случае с остановом потока, а исполнение запустит легальная программа.

«Атаки через волокна — это не повышение привилегий, не обход UAC, но доставка полезной нагрузки при этом привлекает намного меньше внимания, — пояснил исследователь для Dark Reading. — Их легко реализовать и труднее детектировать, поэтому волокна — прекрасный вариант для любого скрипт-кидди».

Публиковать другие подробности и PoC-коды Джэри пока не собирается, но советует ИБ-службам включить Windows Fibers в список потенциальных векторов атаки, а EDR-защиту постоянно проверять на готовность к новым угрозам.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru