Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

R-Vision выпустила новую версию платформы анализа информации о киберугрозах — R‑Vision TIP 3.16. Версия 3.16 включает в себя ряд существенных обновлений.

Разработчик расширил список поддерживаемых SIEM-систем и межсетевых экранов, переработал сервис фида ФинЦЕРТ, а также улучшил собственный источник данных — R-Vision Threat Feed, который теперь может самостоятельно определять связи между сущностями, странами и отраслями субъектов угроз.

Одна из функций платформы R-Vision TIP — возможность реактивного и ретроспективного поиска индикаторов компрометации внутри потока событий, поступающих от SIEM-систем. После ухода с российского рынка иностранных поставщиков SIEM, усилилась необходимость расширения списка отечественных вендоров. Платформа R-Vision TIP поддерживает интеграцию не только с популярными зарубежными решениям, но и с отечественными SIEM-системами. Так, в обновленной версии продукта вендор добавил новые интеграции с такими российскими системами, как VolgaBlob Smart Monitor и Kaspersky Unified Monitoring and Analysis Platform.

Также в обновлении R-Vision расширил список поддерживаемых сторонних производителей СЗИ для экспорта индикаторов компрометации. Обнаруженные индикаторы компрометации могут автоматически экспортироваться на межсетевые экраны для дальнейшей обработки и защиты сетевой инфраструктуры. В новой версии платформы перечень доступных для интеграции решений вендоров пополнился отечественным производителем межсетевых экранов Ideco UTM. Кроме того, добавлена новая возможность настраивать интеграцию и правила экспорта индикаторов из R-Vision TIP в Kaspersky Security Network.

Команда R-Vision TIP продолжает развивать свой собственный фид, интегрированный в платформу. Он автоматически собирает TI-отчеты из достоверных открытых источников, а также извлекает из них ключевые артефакты Threat Intelligence. В обновленной версии R-Vision Threat Feed в 11 раз увеличен датасет для обучения модели распознавания артефактов TI и существенно выросла точность распознавания сущностей: теперь модель умеет определять непосредственные связи между сущностями, а также страны и индустрии субъектов угроз и жертв.

В версии R-Vision TIP 3.16 разработчики расширили модель данных, добавив в нее новые типы индикаторов — ИНН, СНИЛС, хэш суммы номеров паспортов, номера счетов, электронных кошельков и телефонов. Эта информация загружается в R-Vision TIP из нового источника данных — АС «Фид-Антифрод», который содержит информацию о получателях скомпрометированных переводов. В ранних версиях платформы R-Vision TIP пользователь мог получать информацию через основной канал об инцидентах Банка России, фидом АСОИ ФинЦЕРТ.

Зачастую информация, полученная от поставщиков данных, лишена контекста, необходимого для анализа индикаторов компрометации и/или связанных с ними событий нарушения безопасности. В рамках планомерного расширения источников получения контекста в новой версии R-Vision TIP была реализована поддержка двух новых сервисов обогащения UrlScan и URLhaus.

«Данные киберразведки являются ключевым элементом для анализа угроз, поэтому список поставщиков данных TI будет и далее пополняться в R-Vision TIP — прокомментировала Валерия Чулкова, руководитель продукта R-Vision TIP. — Кроме того, команда R-Vision TIP также продолжит расширение списка поддерживаемых СЗИ отечественных производителей, что особенно важно в связи со сложившейся конъюнктурой рынка информационной безопасности».

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru