Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

Вышла R-Vision TIP 3.16 с переработанным сервисом фида ФинЦЕРТ

R-Vision выпустила новую версию платформы анализа информации о киберугрозах — R‑Vision TIP 3.16. Версия 3.16 включает в себя ряд существенных обновлений.

Разработчик расширил список поддерживаемых SIEM-систем и межсетевых экранов, переработал сервис фида ФинЦЕРТ, а также улучшил собственный источник данных — R-Vision Threat Feed, который теперь может самостоятельно определять связи между сущностями, странами и отраслями субъектов угроз.

Одна из функций платформы R-Vision TIP — возможность реактивного и ретроспективного поиска индикаторов компрометации внутри потока событий, поступающих от SIEM-систем. После ухода с российского рынка иностранных поставщиков SIEM, усилилась необходимость расширения списка отечественных вендоров. Платформа R-Vision TIP поддерживает интеграцию не только с популярными зарубежными решениям, но и с отечественными SIEM-системами. Так, в обновленной версии продукта вендор добавил новые интеграции с такими российскими системами, как VolgaBlob Smart Monitor и Kaspersky Unified Monitoring and Analysis Platform.

Также в обновлении R-Vision расширил список поддерживаемых сторонних производителей СЗИ для экспорта индикаторов компрометации. Обнаруженные индикаторы компрометации могут автоматически экспортироваться на межсетевые экраны для дальнейшей обработки и защиты сетевой инфраструктуры. В новой версии платформы перечень доступных для интеграции решений вендоров пополнился отечественным производителем межсетевых экранов Ideco UTM. Кроме того, добавлена новая возможность настраивать интеграцию и правила экспорта индикаторов из R-Vision TIP в Kaspersky Security Network.

Команда R-Vision TIP продолжает развивать свой собственный фид, интегрированный в платформу. Он автоматически собирает TI-отчеты из достоверных открытых источников, а также извлекает из них ключевые артефакты Threat Intelligence. В обновленной версии R-Vision Threat Feed в 11 раз увеличен датасет для обучения модели распознавания артефактов TI и существенно выросла точность распознавания сущностей: теперь модель умеет определять непосредственные связи между сущностями, а также страны и индустрии субъектов угроз и жертв.

В версии R-Vision TIP 3.16 разработчики расширили модель данных, добавив в нее новые типы индикаторов — ИНН, СНИЛС, хэш суммы номеров паспортов, номера счетов, электронных кошельков и телефонов. Эта информация загружается в R-Vision TIP из нового источника данных — АС «Фид-Антифрод», который содержит информацию о получателях скомпрометированных переводов. В ранних версиях платформы R-Vision TIP пользователь мог получать информацию через основной канал об инцидентах Банка России, фидом АСОИ ФинЦЕРТ.

Зачастую информация, полученная от поставщиков данных, лишена контекста, необходимого для анализа индикаторов компрометации и/или связанных с ними событий нарушения безопасности. В рамках планомерного расширения источников получения контекста в новой версии R-Vision TIP была реализована поддержка двух новых сервисов обогащения UrlScan и URLhaus.

«Данные киберразведки являются ключевым элементом для анализа угроз, поэтому список поставщиков данных TI будет и далее пополняться в R-Vision TIP — прокомментировала Валерия Чулкова, руководитель продукта R-Vision TIP. — Кроме того, команда R-Vision TIP также продолжит расширение списка поддерживаемых СЗИ отечественных производителей, что особенно важно в связи со сложившейся конъюнктурой рынка информационной безопасности».

287 расширений для Chrome с 37 млн шпионили за пользователями

Исследователи безопасности обнаружили 287 расширений для Google Chrome, которые, по их данным, тайно отправляли данные о посещённых пользователями сайтах на сторонние серверы. Суммарно такие расширения были установлены около 37,4 млн раз, что равно примерно 1% мировой аудитории Chrome.

Команда специалистов подошла к проверке не по описаниям в магазине и не по списку разрешений, а по фактическому сетевому поведению.

Для этого исследователи запустили Chrome в контейнере Docker, пропустили весь трафик через MITM-прокси и начали открывать специально подготовленные URL-адреса разной длины. Идея была простой: если расширение «безобидное» — например, меняет тему или управляет вкладками — объём исходящего трафика не должен расти вместе с длиной посещаемого URL.

А вот если расширение передаёт третьей стороне полный адрес страницы или его фрагменты, объём трафика начинает увеличиваться пропорционально размеру URL. Это измеряли с помощью собственной метрики. При определённом коэффициенте расширение считалось однозначно «сливающим» данные, при более низком — отправлялось на дополнительную проверку.

 

Работа оказалась масштабной: на автоматическое сканирование ушло около 930 процессорных дней, в среднем по 10 минут на одно расширение. Подробный отчёт и результаты опубликованы в открытом репозитории на GitHub, хотя авторы намеренно не раскрыли все технические детали, чтобы не облегчать жизнь разработчикам сомнительных аддонов.

Среди получателей данных исследователи называют как крупные аналитические и брокерские экосистемы, так и менее известных игроков. В отчёте фигурируют, в частности, Similarweb, Big Star Labs (которую авторы связывают с Similarweb), Curly Doggo, Offidocs, а также ряд других компаний, включая китайские структуры и небольших брокеров.

Проблема не ограничивается абстрактной «телеметрией». В URL могут содержаться персональные данные, ссылки для сброса паролей, названия внутренних документов, административные пути и другие важные детали, которые могут быть использованы в целевых атаках.

 

Пользователям советуют пересмотреть список установленных расширений и удалить те, которыми они не пользуются или которые им незнакомы. Также стоит обращать внимание на разрешение «Читать и изменять данные на всех посещаемых сайтах» — именно оно открывает путь к перехвату URL.

RSS: Новости на портале Anti-Malware.ru