71% пользователей не может отличить вредоносные QR-коды от безобидных

71% пользователей не может отличить вредоносные QR-коды от безобидных

71% пользователей не может отличить вредоносные QR-коды от безобидных

Специалисты в области кибербезопасности предупреждают об опасности QR-кодов, которые злоумышленники могут использовать в связке с социальной инженерией. Такие схемы позволяют открывать аккаунты пользователей онлайн-банкинга, опустошать банковские счета жертв, а также устанавливать вредоносные программы и внедряться в корпоративные системы.

Эксперты называют QR-коды идеальным вектором атаки, поскольку многие доверяют им и недооценивают их вредоносный потенциал. В исследовании компании MobileIron чётко прослеживается растущая популярность QR-кодов как одного из способов атаки. Специалисты опросили более 2100 клиентов и выяснили интересные детали в отношении использования QR-кодов.

Например, 71% респондентов не может отличить вредоносный QR-код от безобидного. При этом почти 17% сталкивались с ситуацией, в которой именно такие коды перенаправляли их мобильные устройства на подозрительные сайты.

 

По данным American Express, в 2020 году аналитики отметили рост популярности QR-кодов. Например, 27% опрошенных американцев и британцев совершали транзакции при помощи этих кодов.

 

При этом команда MobileIron нашла десять способов взломать мобильное устройство пользователя с помощью сгенерированных за считаные секунды QR-кодов. Например, потенциальный атакующий может получить доступ к списку контактов, электронной почте, текстовым сообщениям, геолокации, взломать ваш аккаунт в банковской системе и многое другое.

 

В MobileIron убеждены, что QR-коды являются уже частью нашей жизни, и именно поэтому важно учитывать их потенциальную опасность.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru