Центробанк обнаружил вирус, считывающий данные с чипов платежных карт

Центробанк обнаружил вирус, считывающий данные с чипов платежных карт

Центробанк обнаружил вирус, считывающий данные с чипов платежных карт

Центр мониторинга и реагирования на компьютерные атаки в кредитно-финансовой сфере ("ФинЦЕРТ") Банка России обнаружил вирус, который считывает данные с чипов платежных карт. При этом считывание данных не приводит к автоматическому несанкционированному переводу денег, отмечает регулятор.

В соответствии с технологией EMV (международный стандарт для операций по банковским картам с чипом) каждая транзакция, осуществляемая при помощи чипа, уникальна за счет использования криптографических преобразований, пишет ria.ru.

"ФинЦЕРТ" зафиксировал единичные случаи использования устройств, способных считывать информацию с чипов платежных карт. В настоящее время проводится техническое исследование этих устройств", — говорится в сообщении.

По мнению регулятора, использовать полученную информацию для создания копии платежной карты возможно, но затруднительно.

Ранее "Лаборатория Касперского" сообщила, что обнаружила нетипичную модификацию троянца Neutrino, атакующего POS-терминалы и крадущего данные банковских карт. При этом Neutrino не сразу приступает к сбору информации — попав в операционную систему POS-терминала, он выжидает некоторое время. Эксперты полагают, что таким образом он, скорее всего, пытается обойти так называемые "песочницы" — защитные технологии с коротким периодом работы, запускающие подозрительный код в изолированной виртуальной среде.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru