«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского», ведущий производитель систем защиты от вредоносного и нежелательного ПО, хакерских атак и спама, сообщает об успешном патентовании передовой технологии в области борьбы со спамом. Технология, запатентованная в России, обеспечивает быстроту и высокий уровень детектирования нежелательных сообщений в изображениях.

Современные системы фильтрации спама легко детектируют текстовый спам. Поэтому спамеры часто используют метод сокрытия текстов нежелательных сообщений в изображениях. Задача фильтрации графического спама значительно сложнее, чем текстового – в данном случае антиспам-система должна не только установить, является ли текст спамом, но и предварительно зафиксировать наличие самого текста в изображении.

Большинство методов выявления текста в изображениях основаны на машинном распознавании графических образов. Однако качественное машинное распознавание требует единообразия размеров, стилей и расположения считываемых символов. Данное ограничение используется спамерами, которые намеренно искажают и зашумливают изображения в целях затруднения и замедления процесса детектирования текстов.

Передовая технология «Лаборатории Касперского» предназначена для эффективного обнаружения текстов и спама в растровых изображениях без необходимости машинного распознавания графических образов. Такой подход обеспечивает высокую скорость детектирования и позволяет находить тексты практически на любом языке.

Новая антиспам-технология «Лаборатории Касперского» разработана Евгением Смирновым. Выдача патента на неё одобрена Федеральной службой по интеллектуальной собственности, патентам и товарным знакам 13 января 2009 года.

В основе запатентованной технологии лежит вероятностно-статистический метод, согласно которому решение о том, содержит ли изображение текст, принимается на основании характера расположения вероятных графических образов слов и строк, а также содержания в них выявленных образов букв и слов. Наличие специальных фильтров обеспечивает устойчивость системы к шумовым элементам и разбиению текста рамками и линиями, а использование особого способа выявления строк – к таким встречающимся в графическом спаме искажениям, как повороты текста и написание его волной.

Кроме детектирования текста в изображениях, новейшая система способна эффективно определять, является ли обнаруженный текст спамом, сравнивая его сигнатуру с шаблонами спама, хранящимися в базе данных.

«С одной стороны, новый метод неплохо детектирует текст, который может быть написан почти на любом языке, – говорит автор изобретения Евгений Смирнов, руководитель группы развития антиспам-технологий «Лаборатории Касперского». – С другой стороны, мы не пытаемся прочитать текст машинным образом, что позволяет данному методу оставаться достаточно быстрым для возможности его применения в высокопроизводительном антиспам-фильтре «Лаборатории Касперского»».

«Это очень значимое изобретение для антиспам-индустрии, – заявляет руководитель направления патентования «Лаборатории Касперского» Надежда Кащенко. – Следует отметить, что для распознавания спама в виде обычных текстовых сообщений имеется много различных технических решений, а вот для распознавания текстового спама, внедрённого в изображение, решений очень мало и все они слишком сложные, поскольку сначала надо обнаружить наличие текста в изображении, а потом уже определить, относится ли этот текст к спаму. Решение Евгения Смирнова уникальное, отличается новизной и относится к уже новому уровню технологий, что и позволило нам отстоять права на это изобретение и получить патент».

В настоящее время патентные организации США и России рассматривают более трех десятков патентных заявок «Лаборатории Касперского», описывающих уникальные инновационные технологии в области информационной безопасности.

Сегодня технологии «Лаборатории Касперского» используются по лицензии ведущими ИТ-компаниями мира, в том числе Microsoft, Bluecoat, Juniper Networks, Clearswift, Borderware, Checkpoint, Sonicwall, Websense, LanDesk, Alt-N, ZyXEL, ASUS и D-Link.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru