"Лаборатория Касперского" реализует антивирусную защиту на графических решениях Nvidia Tesla

"Лаборатория Касперского" реализует антивирусную защиту на графических решениях Nvidia Tesla

«Лаборатория Касперского» внедрила в свою инфраструктуру технологии параллельных вычислений от Nvidia. Для повышения уровня защиты клиентов компания начала использовать высокопроизводительные вычислительные системы Nvidia Tesla S1070, созданные на основе многоядерных графических процессоров.

Графические процессоры Nvidia Tesla основаны на вычислительной архитектуре Nvidia CUDA, благодаря чему программировать GPU можно с помощью стандартных языков программирования и API. «Лаборатория Касперского» использует одноюнитовые серверные системы Tesla S1070 для ускорения интеллектуальных сервисов определения схожести файлов. Сервисы схожести позволяют идентифицировать новые файлы, определяя, на какой файл или группу файлов больше всего похожа неизвестная программа, поступившая в антивирусную лабораторию компании.

Использование систем Tesla сервисами определения схожести позволило значительно повысить скорость идентификации неизвестных файлов и ускорить реакции на новые угрозы, обеспечив пользователей ещё более быстрой и полной защитой. Так, во время внутреннего тестирования система Tesla S1070 показала в 360 раз более высокую скорость работы алгоритма определения схожести по сравнению с распространенным центральным процессором Intel Core 2 Duo с тактовой частотой 2,6 ГГц.

Алгоритмы сервисов определения схожести были специально оптимизированы для работы на новых вычислителях. Они были значительно переработаны для одновременного выполнения сотен и тысяч инструкций, за каждую из которых обрабатываются большие массивы данных. Для этого специалисты «Лаборатории Касперского» использовали среду разработки Nvidia CUDA SDK, позволяющую писать программы для графических процессоров Nvidia последних поколений на стандартных языках программирования.

В «Лаборатории Касперского» планируют расширять область использования средств высокопроизводительных параллельных вычислений на графических процессорах.

Источник

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru