Google помогла устранить более тысячи проблем в исходном коде проекта FFmpeg

Google помогла устранить множество проблем в исходном коде проекта FFmpeg

Корпорация Google поделилась деталями проекта, связанного с поиском и устранением ошибок в открытом мультимедиа пакете FFmpeg, который, как оказалось, активно используется внутри корпорации и в её продуктах, включая YouTube и Google Chrome.

В течение последних двух лет для процесса тестирования кодовой базы были задействованы 500 компьютерных ядер, а также исходный мультимедиа материал, собранный со всего интернета, включая файлы из самого проекта, находящиеся на сайте samples.mplayerhq.hu и собственный набор для тестирования регрессий проекта FFmpeg под названием FATE.

Тестирование заключалось в изменении исходных файлов и добавлении разнообразного случайного мусора с тем, чтобы выявить проблемы в функциях, занятых обработкой исходного материала для кодирования и декодирования - в компьютерной среде этот способ обыкновенно называется fuzzing. Другой способ тестирования - это прямой вызов функций библиотеки с не совсем корректными данными, чтобы проверить надёжность обработки подобной информации. Впоследствии, проект был расширен до 2000 ядер, а методы мутации исходных материалов были сделаны более разнообразными, пишет opennet.ru.

В ходе работы над проектом было выявлено более 1120 ошибок, которые уже устранены. Найденные ошибки можно разделить на следующие классы:

  • Разыменование NULL-указателей;
  • Неверные вычисления указателей, приводящие к SIGSEGV из-за использования "чужой" памяти;
  • Чтение и запись за пределы стека, кучи и массивов;
  • Неверные вызовы free(), а также двойное освобождение указателей;
  • Ошибки деления;
  • Ошибки assert();
  • Использование неинициализированной памяти.

Google таким же образом помогла форку FFmpeg, libav, в котором было устранено 413 ошибок.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru