Компания Vigilant применила теорию информации для борьбы с угрозами

Компания Vigilant применила теорию информации для борьбы с угрозами

Специалисты фирмы намерены применять для противодействия вредоносному программному обеспечению математические методы измерения энтропии. Вычисляя степень неопределенности фрагментов в потоке данных, можно обнаруживать аномалии, которые, в свою очередь, способны указать на присутствие опасных приложений или активности злоумышленников.

Так, если последующий фрагмент полностью предсказуем на основании сведений о предыдущих, то можно говорить, что энтропия в рассматриваемом случае имеет нулевое значение. При равновесном выборе из двух вариантов (как в общеизвестном примере с подбрасыванием монеты) степень случайности соответствует одному биту энтропии, и так далее. В защите информации энтропию можно привлекать, скажем, для оценки надежности паролей: если абсолютно случайное кодовое слово, состоящее из восьми произвольных и ни разу не повторяющихся символов, может характеризоваться 52 битами энтропии, то при использовании определенных слов степень неопределенности пароля снижается в среднем до 18 битов - а, следовательно, взломщик может испробовать не все 252 комбинаций, а лишь наиболее вероятные 218 (существенно снизив тем самым время подбора).

Vigilant, однако, использует энтропию для других целей, а именно - для выявления атипичных образцов данных, которые могут быть соотнесены с вредоносным кодом. Похожая тактика успешно применяется в службах защиты от спама: если одна учетная запись отправляет письма на тысячи адресов, не имеющих никакой явной связи ни с ней, ни друг с другом, то можно с высокой степенью уверенности заключить, что рассылка является нежелательной. Эксперты компании уверены, что расчет показателя энтропии может быть столь же эффективно использован для отсеивания вредоносных объектов (поскольку многие инфекции генерируют случайные имена файлов), а также доменов. В частности, по данным Vigilant, степень неопределенности обычного доменного имени изменяется в пределах от 2,5 до 3,9 битов; следовательно, если энтропия превышает уровень в 4 бита, то перед нами, скорее всего, продукт работы вредоносного генератора случайных имен.

Еще один вариант применения соответствующих расчетов - борьба с программными шпионами, которые используются в долговременных атаках повышенной сложности (APT). Чтобы скрыть факт утечки сведений, шпионы часто шифруют информацию перед ее отправкой хозяину, но при передаче используют стандартный протокол HTTP, а не защищенное соединение. Обычный текст на естественном языке имеет невысокие показатели энтропии (например, для английского языка - от 0,6 до 1,5 бит); напротив, шифртекст по самой своей сущности должен характеризоваться как можно более высокой степенью непредсказуемости. Соответственно, если по обычному исходящему соединению вдруг начинают идти потоки данных с высоким показателем энтропии, то это явственно сигнализирует о попытке передать криптованные сведения - что, в свою очередь, вызывает обоснованные подозрения.

PC World

Письмо автору

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru