Технологии ABBYY помогут SECURIT DLP распознавать конфиденциальные данные в графических документах

Технологии ABBYY помогут SECURIT DLP распознавать конфиденциальные данные в графических документах

Компания SECURIT, объявляет о заключении партнерского соглашения с компанией ABBYY. В рамках соглашения SECURIT сможет использовать технологию распознавания текстов ABBYY в продуктах Zlock и Zgate. Решения Zlock и Zgate, входящие в комплекс SECURIT DLP, предназначены для защиты от утечек конфиденциальной информации и персональных данных. Zlock и Zgate анализируют все выходящие за пределы корпоративной сети документы и блокируют их передачу в случае выявления нарушений действующих политик безопасности. 



Интеграция с ABBYY FineReader Engine позволит DLP-решениям SECURIT распознавать и предотвращать утечки конфиденциальных данных, содержащихся в отсканированных, рукописных и других графических документах. Для анализа распознанных текстов может использоваться более десяти технологий SECURIT. Среди них простая и эффективная технология «цифровых отпечатков» DocuPrints, лингвистический движок MorphoLogic для анализа динамических и недавно созданных документов и интеллектуальная технология SmartID с возможностью «обучения» в процессе своей работы. Для обнаружения конфиденциальной информации методом регулярных выражений в системе имеется более 50 предустановленных шаблонов персональных данных.

ABBYY FineReader Engine поддерживает распознавание текстов на 198 языках, в том числе на английском, белорусском, испанском, итальянском, казахском, китайском, немецком, русском, украинском, французском и японском. Высокие качество и скорость распознавания обеспечиваются применением собственных технологий предварительной подготовки документа — перед распознаванием происходит разделение текста и фона, исправляются возможные перекосы и «перевернутые» на 90 или 180 градусов страницы, корректируется масштаб, удаляются артефакты и искажения, обычно возникающие при сканировании или фотосъемке. ABBYY FineReader Engine поддерживает распознавание текста в BMP, DJVU, GIF, JPEG, PDF, PNG, TIFF и других распространенных форматах.

«Мы выбрали ABBYY, так как привыкли работать с лидерами в своих областях. Инструментарий для разработчика ABBYY FineReader Engine является лучшим решением для распознавания текстов и поддерживает множество языков, форматов файлов и дополнительных технологий, его использование существенно расширяет возможности наших DLP-решений. Кроме того, нас приятно удивила стабильность и скорость ABBYY SDK по сравнению с другими OCR-продуктами», — заявил Алексей Раевский, генеральный директор компании SECURIT.

«Системы защиты конфиденциальных данных от утечек должны поддерживать анализ потоков информации любого формата. В реальности, к сожалению, пока далеко не все DLP-системы способны предотвращать утечку конфиденциальных документов в графическом виде (сканы документов в pdf и других форматах, снимки экранов). Мы рады, что технологии распознавания ABBYY в составе продуктов SECURIT смогут сделать графические документы "видимыми" для процесса автоматического контроля и позволят еще более эффективно решать задачу защиты от утечек», — сказал Дмитрий Шушкин, директор по корпоративным проектам компании ABBYY Россия.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru